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We introduce solvable stochastic dealer models, which can reproduce basic empirical laws of financial
markets such as the power law of price change. Starting from the simplest model that is almost equivalent to
a Poisson random noise generator, the model becomes fairly realistic by adding only two effects: the self-
modulation of transaction intervals and a forecasting tendency, which uses a moving average of the latest
market price changes. Based on the present microscopic model of markets, we find a quantitative relation with
market potential forces, which have recently been discovered in the study of market price modeling based on
random walks.
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I. INTRODUCTION

Research on financial markets using methods and con-
cepts developed in physics has increased considerably over
the last decade. Various kinds of stylized facts or empirical
laws of markets have been discovered from high-precision
market data of gigantic size �1–6�. The next goal of this
econophysics study is to establish the reasons for these em-
pirical findings. Just as the Boyle-Charles macroscopic law,
which can be derived from a simple microscopic ideal-gas
model, we hope to construct a simple microscopic model of
a market that can reproduce major empirical findings. By
relating macroscopic market behaviors to microscopic deal-
ers’ actions, we may find a pathway to control the markets,
so as to avert bubbles and crashes, which occasionally cause
problems in the real markets.

The study of modeling dealers’ action has been carried out
with the names of dealer models, agent-based models, or
artificial markets �7–25�. We can categorize these approaches
into five types: �1� order-driven market models �double auc-
tion model� �7–12�, �2� fundamentalists vs chartists models
�13–15�, �3� minority games �16–19�, �4� spin-based models
�20–22�, and �5� dealer models �23–25� introduced in this
paper.

Order-driven market models attempt to reconstruct dy-
namics of both limit orders �buy or sell order with fixed
prices� and market orders �immediate buy or sell order with
the best market prices� on a one-dimensional price board just
like real markets. These models reproduce some of empirical
laws such as power-law distributions of price changes and
slow decay of autocorrelation of volatility �defined by abso-
lute values of price changes� by adjusting the distribution of
positions for new limit orders.

Fundamentalists vs chartists models also reproduce
power-law distributions of price changes and slow decay of
autocorrelation of volatility by controlling the dynamics of
fundamentalists’ and chartists’ prices and the number ratio of

fundamentalists and chartists. Minority games and spin-
based models are similar in the sense that in both models
dealers are assigned to be either buyers �up spin� or sellers
�down spin�. Dealers are assumed to interact according to
mass psychology.

The quantities of demand and supply, or the number of
buyers and sellers, are introduced in fundamentalists vs char-
tists models, minority games, and spin-based models, and
these quantities are simply considered to be proportional to
the price change in the very near future. On the other hand in
order-driven market models this kind of simplification is not
assumed and the market prices are determined by matching
the selling and buying prices. The dealer model to be intro-
duced in Sec. II of this paper belongs to this category.

In order to find relationships between the parameters of
dealers’ actions and market behavior, we have already intro-
duced the dealer models which consist of dealers with simple
deterministic time evolution rules �23–25�. With this model,
we successfully reproduced most of the basic empirical laws
using a minimal number of parameters and found that there
are only three important effects needed to reproduce the em-
pirical laws. The first effect is the compromise pricing of
both buyers and sellers, who tend to allow the particular
transaction price they have in mind to approach the current
market price in order to make a deal. From this effect, trans-
actions occur spontaneously in the market and the price rises
and falls almost randomly. The second effect is the self-
modulation of transaction intervals, that is, the rate of a deal-
er’s clock depends on the latest moving average value of
transaction intervals. When market activity becomes high,
dealers accelerate their transaction rates, and by this effect
we can reproduce empirical statistical properties of transac-
tion intervals which deviate from a simple Poisson process.
The third is the trend-follow effect, that is, dealers forecast
upcoming prices using the latest market trend which is de-
fined by a moving average of price changes. This forecasting
effect makes the price change distribution follows a power
law quite similar to that of the real market.

In this paper we first introduce a stochastic version of the
dealer model which is even simpler than the above �deter-
ministic� model. In the case of the deterministic dealer model*yamada@smp.dis.titech.ac.jp
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we needed at least three dealers to reproduce market proper-
ties; however, in the present stochastic model we require
only two. The advantages of this stochastic model are not
only its simplicity but also its solvability by analytical cal-
culation. In the usual agent-based approaches intensive nu-
merical simulation is the only way to obtain results; in such
cases exact or strict results are rarely obtained. Based on this
stochastic dealer model and its variants we can derive the
major empirical results mentioned above that have already
been obtained by simulation of the deterministic dealer
model by theoretical analysis.

Apart from agent-based modeling, the standard way to
model markets is by utilizing random walks. It is now widely
known that Bachelier �26� introduced a random-walk model
for market prices 5 years earlier than Einstein’s random-walk
model of Brownian motion �27�. Nobel prize laurelled works
such as the portfolio theory, option price formulation �28�,
and the AutoRegressive Conditional Heteroskedasticity
�ARCH� and GARCH models �29,30� are all based on
random-walk models.

Recently, one of the authors �M.T.� has introduced a new
type of extended random-walk model of the market, the so-
called Potentials of Unbalanced Complex Kinetics �PUCK�
model, in which a random walker moves according to a de-
forming potential force, the center point of which is given by
the moving average of the random walker’s traces. By using
this generalization, all major empirical laws can be estab-
lished; moreover, dynamical behaviors such as bubbles,
crashes, and inflations can also be described as following
from special cases of the market potential force �31,32�. The
ARCH model can also be derived as a special limiting case
of this extended random-walk model �33�.

Considering the wide applicability of the PUCK model
we need to answer the question concerning the origin of
market potential forces. This question has been partially an-
swered by using the deterministic dealer model �34�. In this
paper, we are able to provide quantitative answers by using
the stochastic dealer model.

In the next section we introduce our stochastic dealer
models step by step in sequential subsections. The third sec-
tion is devoted to the relationship with the PUCK model, in
which we will see how dealers’ actions produce a market’s
potential force in a quantitative discussion. The final section
contains a summary.

II. STOCHASTIC DEALER MODEL

In this section we introduce three stochastic dealer mod-
els: model 1, model 2, and model 3. Model 1 is the simplest
market model in which the framework of the stochastic
dealer model is introduced. Then, we note two empirical
properties which model 1 cannot reflect. In model 2 and
model 3 we introduce two additional effects, respectively, to
deal with these difficulties. After combining these revisions,
the stochastic dealer model fully reflects all major empirical
laws of markets.

A. Model 1

First, we assume an artificial market consisting of only
two dealers who are offering both buying and selling prices.

The buying price, or bid price, is the current maximum price
at which the dealer wants to buy. The selling price, or ask
price, is the minimum price at which he will sell. For each
dealer the ask price is always higher than the bid price, be-
cause they want some margin, and the difference between
these prices is called the spread, which is assumed to be a
constant L in this model. We define the ith dealer’s midprice
at time t, pi�t�, as the average of his bid and ask prices. When
�p1�t�− p2�t�� is less than L, these dealers do not transact as
their transaction conditions are not fulfilled �Fig. 1�a��. In
such a case dealers are assumed to change their prices ran-
domly according to the following rule:

pi�t + �t� = pi�t� + cfi�t�, i = 1,2,

f i�t� = �+ �p �prob. 1/2�
− �p �prob. 1/2� .

� �1�

Here, f i�t� is a random noise for the ith dealer and c is a
constant parameter. Then, the distance between p1�t� and
p2�t� is checked. If it is greater than or equal to L, then one
dealer’s bid price is higher than the other’s ask price, and a
transaction occurs �Fig. 1�c��. In such a case a unit volume
deal is assumed to be made, with the market price given by
the averaged price of the two dealers’ midprices. After this
transaction their midprices are assumed to shift to the market
price. These processes are repeated again and again and the
time proceeds in unit of �t.

It should be noted that there is a possibility that this
model produces a negative value for market price. In such a
case the step width of the price change �p should depend on
the market price, such that the value of �p is proportional to
the market price to avoid crossing the origin. Here, we pay
attention only to the case that the price fluctuation level is
much smaller than the market price and, for simplicity, we
assume that �p is constant.

For the convenience of analysis we define another unit of
time called the tick time, denoted by n, which takes an inte-
ger value incremented at each occurrence of a transaction.

Ask price

Bid price

Price

(a) (b) (c) (d)
Transaction

p1(t)
p2(t) P (n)

FIG. 1. �Color online� Time evolution of the dealer model.
Squares and circles denote ask and bid prices, respectively. The ith
dealer’s midprice is denoted by pi�t�. �a� In this situation no trans-
action occurs. �b� The dealers’ prices follow random walks. �c�
When the distance between p1�t� and p2�t� is greater than or equal
to L, a transaction occurs and the market price is defined by the
averaged price of the two midprices. �d� After this transaction both
dealers’ midprices move to the market price. These processes are
repeated.

YAMADA et al. PHYSICAL REVIEW E 79, 051120 �2009�

051120-2



Accordingly, P�n� denotes the market price at tick time n and
the nth transaction interval I�n� is defined by the time differ-
ence between the �n−1�th and nth transactions.

In Fig. 2, we plot an example of resulting market prices
and corresponding transaction intervals. In the subwindows
of these figures we also plot the probability density function
of price changes �P�n�− P�n−1�� and transaction intervals
I�n� both on a semilogarithmic scale. It is clear that the tail
parts of both of these distributions are well characterized by
exponential laws. As for the intervals, this result implies that
the occurrence of transactions of this model is approximated
by a Poisson process. It is interesting that the price change
distribution of this simplest model follows an exponential
distribution, except around �P=0, instead of a Gaussian dis-
tribution.

We can explain the functional form of the tails of these
distributions as follows. We define the difference of the deal-
ers’ prices by D�t�= p1�t�− p2�t�, then the condition for the
occurrence of a transaction is given by �D�t���L, and we
also define the mass center by the average of the two mid-
prices, G�t�= �p1�t�+ p2�t�	 /2. As the mass center at the time
of transaction gives the market price, the market price can be
calculated from the information about G�t� at the time that
satisfies �D�t���L. Namely, �P is given by �G which is
defined by �G=G�t�−G�t��, where t� is the previous trans-
action time. These two variables define a two-dimensional
random walk with absorbing walls at D�t�=L and D�t�=−L
as shown in Fig. 3. The stochastic dynamics is described by
the following set of equations �2�.

D�t + �t� = D�t� + 
+ 2c�p �prob. 1/4�
�0 �prob. 1/2�
− 2c�p �prob. 1/4� ,

� �2a�

�G�t + �t� = �G�t� + 
+ c�p �prob. 1/4�
�0 �prob. 1/2�
− c�p �prob. 1/4� .

� �2b�

When the random walker reaches one of the absorbing
walls, a transaction occurs, and by the transaction rule of
model 1 that the prices of the two dealers are then set to the
market price, the random walker goes to the origin, and a
new random walk begins. In this two-dimensional formula-

tion the transaction interval I�n� is given by the survival
time, that is, the time the random walker starting from the
origin takes to reach one of the absorbing walls. Similarly,
the market price change �P�n� is given by the random walk-
er’s location on the G axis.

In Fig. 3 an example of a random walk is shown for better
understanding of this mapping of model 1 to a two-
dimensional random walk. Here, the horizontal axis is the x
axis and the vertical one is the y axis. For theoretical analysis
we consider a continuum limit such that the mesh sizes of
space and time go to zero. Under the condition �t= ��x�2

= ��y�2, we find that the probability density u�x ,y , t� of the
particle in the �x ,y� plane at time t is described by the fol-
lowing diffusion equation:

�u�x,y,t�
�t

= c2�1

4

�2u

�x2 +
�2u

�y2 , �3�
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FIG. 2. Examples of time series of �a� market prices and �b� transaction intervals. Subwindows of these figures show the probability
densities of market price changes and transaction intervals on a semilogarithmic scale. The parameters for this simulation are as follows:
L=0.01, c=0.01, �p=0.01, and �t=�p ·�p.
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FIG. 3. Random walk in the �G-D plane. The particle starts
from the origin and continues a random walk until it touches one of
the horizontal walls, meaning that a market transaction occurs. The
transaction interval is given by the survival time of this random
walker and the market price change �P is given by the distance
along the �G axis from the origin to the position of the particle on
the absorbing wall.
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�u�x,y,0� = ��x,y − L� :initial condition

u�x,0,t� = u�x,2L,t� = 0 :boundary condition.
� �4�

Here, c2 is equivalent to the diffusion coefficient of this two-
dimensional random walk. The initial condition is the delta
function and the boundary condition is given by the absorb-
ing walls on the y axis, while there is no boundary in the x
direction. This diffusion equation is solved exactly as fol-
lows:

u�x,y,t� =
1

cL��t
e−x2/c2t�

n=1

�

sin
n�

2
sin�Pny�e−c2Pn

2t. �5�

Here, Pn= n�
2L . We obtain the distributions of transaction in-

tervals Q1�I� and price changes Q2���P�� by calculating dis-
tributions of survival times and absorbed points from Eq. �5�,

Q1�I� =
4

�
�
n=1

�
�− 1�n+1

�2n − 1�
c2P2n−1

2 e−c2P2n−1
2 I, �6a�

Q2���P�� =
4

L
�
n=1

�

�− 1�n+1e−�2n−1��/L��P�. �6b�

In the case of large values of I and ��P� in Eq. �6�, these
summations are dominated by the term of n=1. So, the func-
tions I and ��P� can be approximated as

Q1�I� � e−�c�/2L�2I, �7a�

Q2���P�� � e−��/L���P�. �7b�

From these results we can derive the exponential laws of
interval distributions and the price change distributions al-
ready seen in Fig. 2. It is confirmed that the theoretical val-
ues of the decay constants �2L /c��2 and L /�, fit well with
the numerical results.

Higher-order moments of the distributions of transaction
intervals and price changes are also obtained exactly from
Eq. �6�. The kth moments of �Q1

k�I�� and �Q2
k���P��� are cal-

culated as follows:

�Q1
k�I�� =

L2k��k + 1�
c2k��2k + 1�

Ek, �8a�

�Q2
k���P��� =

4Lk��k + 1�
�k+1 	�k� . �8b�

Here ��x� is the gamma function and Ek are the Euler num-

bers appearing in the expansion of sec x=�k=0
� Ekx

2k

�2k�! ; E0

=1 , E1=1 , E2=5 , E3=61, . . .. 	�k� is the Dirichlet beta
function defined as 	�k�=�n=0

� �−1�n

�2n+1�k . Using these results we
can calculate means and variances of transaction intervals
and volatilities with results as shown in Table I.

B. Model 2

In this section we focus on the statistical differences be-
tween transaction intervals of real markets and those of
model 1. In real dollar-yen exchange market data provided
by EBS for 6 years from 2000 to 2005, we find that the
transaction intervals exhibit a circadian pattern even for for-
eign exchange markets which are open continuously as
shown in Fig. 4 for the dollar-yen market. As seen clearly
from this figure, large numbers of transactions occur during
office hours of Tokyo, London, and New York and the trans-
action density is least a little before the opening of the Tokyo
offices.

In addition to this 24 h pattern, there are fluctuations with
much shorter time scales as typically shown in Fig. 5. In this
figure transaction events are shown by bars at the top and
corresponding dollar-yen rates are plotted in the lower sec-
tion. Here the window size is 10 min and we can find places
where bars tend to cluster, marked as “dense,” and others
where bars are “sparse.” The distribution of these intervals is
clearly seen not to describe by the simple theoretical model
of a Poisson process.

TABLE I. Exact solutions for the means and variances of trans-
action intervals and the absolute value of price changes in model 1.
K is Catalan’s constant; K=	�2�= 1
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FIG. 4. Diurnal pattern of transactions in the dollar-yen market.
The vertical axis depicts the mean number of transactions per quar-
ter hour.
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FIG. 5. �Color online� Dollar-yen rates for 10 min �lower curve�
and transaction intervals �upper lines�. There are dense and sparse
periods for the occurrences of transactions.
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The clustering properties of transactions are known to be
well modeled by a self-modulation process introduced by the
authors �35�, which is described as follows.

x�n + 1� = e�n��x�n��� + f�n� , �9�

where � is the time scale of self-modulation,

�x�n��� =
1

N
�
k=0

N−1

x�n − k� , �10�

e�n� and f�n� are independent noises, and N is the number of
transactions occurring within � seconds. This process is a
modified Poisson process whose mean value is given by the
moving average of transaction intervals over the past � sec-
onds. As a result, there is a greater tendency to cluster and
the so-called 1 / f fluctuation is realized in general.

Model 2 is designed to satisfy the real interval property by
applying the self-modulation process. We estimate the distri-
bution of e�n� from real data by using the following relation
for the transaction intervals I�n�:

e�n� =
I�n�

�I�n���

. �11�

Here the typical value of � is 150 s. It is confirmed from
dollar-yen rate data that the distribution of e�n� follows an
exponential distribution in general with mean value of unity.
This exponential distribution is favorable for our model con-
struction as model 1 automatically produces the exponential
interval distribution. As we can control the speed of transac-
tion intervals by controlling the speed of diffusion, we obtain
a revised model, model 2, by modifying the constant param-
eter c in Eq. �1�, which is directly related to the diffusion
coefficient, making it a time-dependent parameter c�n� as
follows:

pi�t + �t� = pi�t� + c�n�f i�t�, i = 1,2,

f i�t� = �+ �p �prob. 1/2�
− �p �prob. 1/2� ,

� �12�

where

c�n� =��I�c=1

�I��

. �13�

In Eq. �13�, �I�c=1 is a mean of transaction intervals shown in
Table I in the case of c=1 and �I�c=1=L2 /2. �I�� is the mov-
ing average of transaction intervals averaged over the latest �
seconds defined as �I��= 1

N�k=0
N−1I�n−k�. In this equation, I�n

−k� is the transaction interval that is the kth tick earlier than
the nth tick. N is the number of transactions within � seconds
from time n. If I�n���, we set �I��= I�n�. It is known from
Eq. �13� that for larger �I�c=1 over �I��, the value of c�n� is
larger, that is, dealers tend to make larger changes in their
prices to effect more rapid transactions when transaction in-
tervals become shorter in the market. By this effect, Eq. �1�
of model 1 is modified to

D�t + �t� = D�t� + 
+ 2c�n��p �prob. 1/4�
�0 �prob. 1/2�
− 2c�n��p �prob. 1/4� ,

� �14a�

�G�t + �t� = �G�t� + 
+ c�n��p �prob. 1/4�
�0 �prob. 1/2�
− c�n��p �prob. 1/4� .

�
�14b�

Examples of random-walk traces are shown in Fig. 6. As
known from this figure the initial condition and the boundary
conditions are the same; however, the step size changes for
each random walk following the self-modulation formula-
tion. By this effect the transaction intervals tend to form
clusters as shown in Fig. 7.

In order to make the interval distribution fits well with
that of the real dollar-yen market, we introduce two thresh-
olds for the value of �I��. When �I��3, we set �I��=3, and
when �I���50, we set �I��=50. These restrictions are needed
to prevent intervals from converging to zero or from diverg-
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FIG. 6. Examples of random-walk traces arising from model 2.
Compared with Fig. 3 for model 1, the step size depends on past
transaction intervals.
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FIG. 7. Examples of transaction occurrences. The upper se-
quence is produced by a simulation of model 1 and the lower one
by model 2.
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ing to infinity. With these minor revisions an example time
sequence produced by model 2 is plotted together with one
produced by model 1 in Fig. 7. Comparing these two se-
quences, we observe that model 2 can reproduce the cluster-
ing property quite well. Moreover, the lower interval se-
quence looks similar to the real sequence shown in Fig. 5.
Actually, the distribution of transaction intervals arising from
model 2 is now very close to that of the actual interval dis-
tribution as shown in Fig. 8.

C. Model 3

In this section we shift our attention from transaction in-
tervals to price changes. We know that the price change dis-
tribution of model 1 is characterized by an exponential dis-
tribution while that of the real market is often characterized
by a power law. It has been established that such power-law
distributions can be derived by introducing the effect of
trend-following prediction �24�. This effect can be intro-
duced to our stochastic dealer model by simply adding a
further term, d��P�M�t, which is defined as follows:

pi�t + �t� = pi�t� + d��P�M�t + cfi�t� ,

f i�t� = �+ �p �prob. 1/2�
− �p �prob. 1/2� � i = 1,2, �15�

where

��P�M =
2

M�M + 1� �
k=0

M−1

�M − k��P�n − k� . �16�

Here �P�n�= P�n�− P�n−1� is the price change at the nth
tick. The new term, ��P�M, is a kind of moving average of
price changes for M ticks with weights that decay linearly.
The parameter d in Eq. �15� is an important parameter that
governs the dealers’ strategy. A dealer with positive d is a
trend follower who predicts upcoming market prices propor-
tional to the latest price slope. On the other hand, a dealer
with a negative d is called a contrarian who forecasts that
upcoming market prices will go against the trend and that the

present market price is close to a local maximum or mini-
mum.

Adding this effect, Eq. �2� in model 1 is modified as

D�t + �t� = D�t� + 
+ 2c�p �prob. 1/4�
�0 �prob. 1/2�
− 2c�p �prob. 1/4� ,

� �17a�

�G�t + �t� = �G�t� + d��P�M�t + 
+ c�p �prob. 1/4�
�0 �prob. 1/2�
− c�p �prob. 1/4� .

�
�17b�

In the two-dimensional random-walk representation the ini-
tial conditions and the boundary conditions are invariant;
however, we have a horizontal flow proportional to d��P�M
as shown in Fig. 9. The existence of this flow implies that the
distance of the absorption point from the origin is greater
than that of the original model 1. As the vertical motions are
completely identical to the original model 1, the transaction
intervals are also identical. So the absorbed point on the
horizontal axis is shifted by I�n�d��P�M. The strength of the
flow depends on the parameter d and the latest price changes.

In this revised model the transaction intervals are identical
to those of model 1 because Eq. �17a� is the same as Eq. �2a�,
while the market price change is described by the following
equation:

�P�n + 1� = I�n�d��P�M + F�n� . �18�

Here, the first term of the right-hand side is the distance
covered by the flow; d��P�M gives the intensity of the flow
and I�n� is the transaction interval. The second term is iden-
tical to the price change of model 1. From the results already
obtained for model 1 it is clear that both I�n� and F�n� are
random variables characterized by exponential functions, so
Eq. �18� follows a random multiplicative process. We know
that a time series which is produced by a random multipli-
cative process generally follows a power law if the process
satisfies a stationary condition. In particular, in the case that
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M =1 and I�n� and F�n� are independent in Eq. �18�, we have
an exact solution �36�. In this model 3, I�n� and F�n� are not
statistically independent and so we do not have an exact
solution; however, if the effect of F is negligibly small, then
we can approximate the result using the solution for the in-
dependent case. We have the exponent 	 for the power law
of cumulative price change distribution as follows:

�d�	�I�n�	� = 1. �19�

Here �I�n�	� is the 	th-order moment of I�n�, so we can
apply Eq. �8a� to Eq. �19�. As a result, we have

�d�	
L2	��	 + 1�
c2	��2	 + 1�

E	 = 1. �20�

It is known that empirical values of the power exponent of
the cumulative price change distribution are around −3 in the
actual market, so we set 	=3, L=0.01, and c=0.01 in Eq.

�20�. Then we have �d��1.25. We can reproduce the power
law of price change distribution with exponent of −3 as rep-
resented in Fig. 10. Other parameters are taken to be �p
=0.01, �t=�p ·�p, and M =1.

III. RELATION BETWEEN THE DEALER MODEL AND
THE PUCK MODEL

We have seen that the stochastic dealer models can repro-
duce important empirical features of markets. In this section
we examine the relation to the market potential model called
PUCK �31,32�. In our previous work, we showed that the
deterministic dealer model can reproduce market potentials
confirmed by numerical simulation, and the essence for re-
construction of the potential is found to be the dealers’ fore-
casting effect using moving averages �34�. We now present
an analysis based on the present stochastic dealer model.

It is easy to confirm that price changes produced by model
3 yield nontrivial market potential functions as shown in Fig.
11. In this figure the parameter d in Eq. �15� is changed. We
set the parameter d=−1.0 during the period from n=1 to
1000 ticks, that is, the dealers are contrarians who predict
that the future price will move against the latest trend. The
parameter d=0 in the period n=1001 to 2000 ticks, that is,
the dealers are simple random walkers. And d=1.0 during
2001 to 3000 ticks, that is, the dealers are trend followers
predicting that in the near future prices will be proportional
to a moving average of price changes. We can clearly ob-
serve a stable, a flat, and an unstable potential function, re-
spectively, as expected. During 3001–4000, we set d=1.0
when the average of the past M price changes, ��P�M, is
greater than or equal to zero and we set d=−1.0 when
��P�M 0. In such an asymmetric case, we can find an
asymmetric potential as shown in Fig. 11�d�; in that case the
market price increases nearly linearly on a large scale. It is
apparent that the market potential function and the dealers’
forecasting effect are also deeply related in this stochastic
model.

The PUCK model is formulated as follows:
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FIG. 9. Random walks on �G-D space for model 3. Two traces
are plotted for comparison with the results of model 1. The dotted
line is for model 1 and the solid line is for model 3, both produced
using the same random number generator.
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P�n + 1� = �P�n� −
�

�P
U�P��

P=P�n�−PM+1�n�
+ F��n� ,

�21�

U�P� =
b�n�
2M

P2. �22�

Here P�n� is the noise reduction price introduced by Ohnishi
et al. �37�, also referred to as the optimal moving average
price, U�P� is the potential function defined by Eq. �22�,
F��n� is an uncorrelated noise term, and PM+1�n� is the
simple moving average over M +1 ticks: PM+1�n�
= 1

M+1�k=0
M P�n−k�. If the market potential is asymmetric as in

Fig. 11�d�, we define the potential function for x0 and x
�0, respectively, by using quadratic functions. In the case of
symmetric potential as Figs. 11�a�–11�c�, we can transform
Eq. �21� to the following equation:

�P�n + 1� = −
b�n�

2
��P�M + F��n� . �23�

��P�M is defined by Eq. �16�. We note that Eq. �18� in model
3 and Eq. �23� have the same form of a linear stochastic
equation, so the statistical property is independent of the
noise property. Comparing the coefficients of ��P�M in Eqs.
�18� and �23�, we have the simple relation

b�n� = − 2dI�n� . �24�

By taking the average over tick times n, we have

�b� = − 2d�I� = − d�L

c
2

, �25�

where �x� denotes the average of x over tick time n. This
equation implies that the market is unstable �b0� when
dealers are trend followers �d�0� while the market is stable
when dealers are contrarians �d0�. This result is consistent
with our previous simulation results using the deterministic
dealer model.

In the PUCK model, when the potential is of quadratic
type such as in Figs. 11�a�–11�c�, the diffusion coefficient of
market prices, �, is theoretically calculated as a function of
the potential coefficient b �38�. By introducing the currently
derived relation, Eq. �26�, into the formula, we have a theo-
retical evaluation of the price diffusion coefficient for our
model 3,

�d��n� =
2c2

2c2 − dL2�d=0��n� . �26�

From this relation we find that in the range of �d�2c2 /L2

the value of � is finite and we can expect the market price to
follow a normal random walk over a long time scale. When
d�2c2 /L2 the above formula is meaningless; however, the
actual market price moves nearly monotonically or even ex-
ponentially found in bubbles in real markets �39�. Actually
we can generate a bubblelike phenomenon by setting d
�2c2 /L2 as shown in Fig. 12. Here, the time evolution is
well approximated by an exponential function as predicted
by the PUCK model �38�. We do not investigate this phe-
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nomenon further in this paper, but it should be stressed that
our model can describe not only normal states of markets but
also abnormal states such as bubbles and crashes where
prices move monotonically, by tuning our model’s param-
eters.

IV. DISCUSSION

We have presented a stochastic dealer model which con-
sists of only two dealers and showed that basic empirical
laws of financial markets are well reflected in terms of trans-
action intervals and price changes. In model 1, both dealers
change their prices randomly, so fluctuations of transaction
intervals and price changes are also random. We calculated
these statistical properties exactly. The occurrence of trans-
actions is well approximated by a Poisson process and the
price change distribution is well described by an exponential
distribution.

In order to make our model more realistic the following
two feedback effects were introduced. One was the feedback
effect of transaction intervals and the other was the feedback
effect of price changes, both caused by the dealers’ observa-
tions of the latest market status. As a result, the basic model’s
random noise properties were modulated and the artificial
market reproduced both the distributions of transaction inter-
vals and price changes to follow long-tailed distributions
which are quite similar to those of real markets. We per-
formed an additional check for the euro-dollar market, in
Appendix A. It is confirmed that all results which we derived
for the dollar-yen market hold also for the euro-dollar mar-
ket.

In this paper we focused on the simplest case with only
two dealers for theoretical analysis. It is easy to show nu-
merically that all characteristic results can be reproduced
also in the case of many dealers, for example, 100 dealers as
shown in Appendix B.

In Sec. III, we established that the dealers’ action of pre-
diction by using a moving average of past price changes
generates market potentials in the PUCK formulation and we
derived a simple theoretical relation between the stochastic
dealer model and the PUCK model. Namely, we found the
relation between the microscopic dealers’ strategy and the

macroscopic market’s stability as defined by the PUCK
model.

As an application of the relation to the PUCK model, we
checked the condition when market prices in our stochastic
dealer model exhibit a bubblelike phenomenon in which
price motion is approximated by an exponential function
rather than a random walk. This transition from a random-
walk phase to an exponential growth phase is considered to
be quite useful for discussions concerning how to realize a
stable market.

We expect that our models can be used as a base for
market experiments. For example, we may be able to observe
the effect of governmental intervention by introducing a third
dealer who only buys dollars over a given period. From the
viewpoint of numerical simulation it is quite easy to increase
the number of dealers, each has his own strategy. So we can
construct any experimental market by adding or subtracting
specific dealers and observe the change in the market’s mac-
roscopic behavior as a result. For example, we may be able
to find a way to avoid market crashes by introducing a spe-
cially designed dealer who acts to stabilize the market. This
kind of market experiment may contribute to future attempts
at real market stabilization.

APPENDIX A: ADDITIONAL CHECK

We compare our simulation with real data not only dollar-
yen market but also euro-dollar market. Figure 13 is the cir-
cadian pattern of transactions. Comparing with dollar-yen
market in Fig. 4, we find that the whole pattern is quite
similar; however, the number of transactions is about twice
larger than the case of dollar-yen market in London and New
York office hours. And the distributions of transaction inter-
vals and price changes are qualitatively the same with yen-
dollar market, so we can reproduce this distribution by ad-
justing the parameters of the introduced model as shown in
Figs. 14 and 15.

APPENDIX B: CASE OF 100 DEALERS

Here, we extend the dealer model to the case of 100 deal-
ers. In Fig. 16, distribution of volatility is plotted in the case
of 100 dealers with a constant parameter d for all dealers. In
this simulation dealers’ prices dynamics defined by Eq. �15�.
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Next we consider the case of dealers with different trend-
follow parameters di. The ith dealer’s time evolution is given
by the following rule:

pi�t + �t� = pi�t� + di��P�M�t + cfi�t� ,

f i�t� = �+ �p �prob. 1/2�
− �p �prob. 1/2� � i = 1,2, . . . ,100. �B1�

Comparing Eq. �15� with this equation we modify the param-
eter d to di, and

di = d̄ + �di, �B2�

where d̄ is the average of trend-follow effect for all dealers in
the market and �di shows each dealer’s deviation which is

given by a random normal distribution with zero mean and
the standard deviation �. For large value of �, the distribu-
tion of volatility tends to shorten the tails as shown in Fig.
17.

In order to improve the large number dealer model to be
compatible with the real data, we introduce temporal change

in d̄, d̄�n�, where n denotes the tick time which is the count

of transactions. The value of d̄�n� is directly related to the
value of the potential coefficient b�n� as shown in Eq. �24�.
From the analysis of real market data, we confirmed that the
time evolution of b�n� can be approximated by a simple au-
toregressive model �40�. Therefore, we introduce the follow-

ing time evolution for d̄�n�:

d̄�n + 1� = �1 − e0�d̄�n� + ��n� ,
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��n� = �+ 0.01 �prob. 1/2�
− 0.01 �prob. 1/2� ,

� �B3�

where e0 is a positive constant less than 1 and ��n� is an
independent random noise. In Fig. 18 we show an example

of time evolution d̄�n�, resulting price evolution, price differ-
ences, and volatility distribution. When the coefficient e0 is

close to 0, the diffusion of d̄�n� becomes large and price
changes tend to have large values.

When d̄�n� is positive the market is dominated by trend

followers, while in the case that d̄�n� is negative the market
is dominated by contrarians. As known from Fig. 18�c� we
clearly observe volatility clustering, and the distribution of
price changes follows a power law as expected.
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